Why Data in the Optical Domain for Next Generation Internet?

Gee-Kung Chang

Byers Chair Professor in Optical Networking School of Electrical and Computer Engineering Georgia Institute of Technology

March 18, 2003

Data in the Optical Domain Network Architecture

- It has to meet future traffic needs and bandwidth on demand
 - Unpredictable bursty traffic pattern and load distribution
 - Dense WDM over core network, broadband optical access to desktop
- Deliver real time, low latency multi-service by optical layer
 - Establish instant connections with flexible link granularity for short or long sessions
 - Support multi-service data over LSPs by optical switching
 - Speed of configuration determine routing and connection efficiency
- Flexible protection and restoration
 - QoS
- Network Scalability
- Moduality

Optical Label Switching

- OLS enables packet switching and multiplexing in the optical domain
- Packet forwarding is based on an optical header
 - For example, header is sub-carrier multiplexed with the optical data
 - "label" field in the optical header determines packet forwarding
 - Data is delayed (in a fiber loop) while the header is examined
 - Data never leaves the optical domain
- Erase and re-insert the label in the optical header
 - using a tunable optical notch filter
 - Operation concerns in terms of hardware construction and network extendability
- Enable optical time slot switching and multiplexing in subwavelength domain independent of packet protocols without requiring end-to-end network synchronization

Optical Label Switching

a. Client layer, IP based path reconfiguration, no optical bypass

b. Hybrid layer, IP/WDM label-switched path, allow optical bypass

c. Core layer, OLS/WDM reconfiguration, optimize optical bypass

Optical Label Switched Optical Network

OLSRs: Optical Label Switching Routers

RWA: Routing and Wavelength Assignment

Example of OLS Packet Header Format

MPLS Header 32 bits+ WDM Specific 48 bits

- Control Flags: 4 bits, Concatenation of Packets, 1 bit; End of Flow, 1 bit
- Priority: 4 bits, 16 levels
- Duration: 16 bits, Burst duration
- Ingress Router-ID: 8 bits
- Egress CI Port: 8 bits
- OTTL: 8 bits, optical time to live
- MPLS Header: 32 bits, (Label, 20 bits; TTL, 8 bits; Exp, 3 bits; S, 1 bit)

Optical Networking Demonstration: Hardware Architecture

OLS NGI Network Demo at OFC 2000 in Baltimore

Data in the Optical Domain: Optical Label Switching

- OLS proof of principle testbed demonstrated by DARPA NGI program
- Simplified robust management and control
 - -Single OLS platform vs separate IP and WDM platforms
 - Eliminates layering overhead and simplifies operations
- Plug and play inter-working module with existing infrastructure
 - Providing appropriate hardware interface, GbE, POS, Fiber channel
 - Adopting standards based control protocols
 - Supporting standards based management interfaces
- Enhanced intelligent new networking services
 - Fast dynamic service creation, provisioning, and protection
 - Flexible real time burst service for various bandwidth granularity
- Natural Next Step in Optical Networking Evolution
 - OLS unifies wavelength routing and packet switching